Quadrature Encoder Counter Board Models: 2IQEC2 2IQEC4
 Documentation Number 2IQEC2/43798

This product
Designed and Manufactured In Ottawa, Illinois
USA
of domestic and imported parts by

B\&B Electronics Mfg. Co. Inc.

707 Dayton Rd. P.O. Box 1040 -- Ottawa, IL 61350 PH (815) 433-5100 -- FAX (815) 433-5105

Internet:
http://www.bb-elec.com
orders@bb-elec.com
support@bb.elec.com

© 1998 B\&B Electronics -- September 1998
Table of Contents
CHAPTER 1: INTRODUCTION 1
PACKING LIST 1
Address Switch Setup 1
SPECIFICATIONS 2
CHAPTER 2: INSTALLATION 3
Software Installation 3
Installing the Card 3
CARd Settings 3
Address 3
IRQ 5
Configuring the jumpers 6
Software Registers 8
Flag Register. 8
Reset and Load Signal Decoders (RLD) 8
Counter Mode Registers (CMR) 9
Input/Output Control Register (IOR) 10
Index Control Registers (IDR) 11
CHAPTER 3: TROUBLESHOOTING 12
APPENDIX A: HARDWARE I/O MAP A-1
I/O Map of XT Class Machines A-1
Hardware I/O Map of AT Class Machines A-2
APPENDIX B: SPECIFICATIONS/TIMING DIAGRAMS B-1
Pin Description B-1
AdDresses B-1
Transient Characteristics B-2
Quadrature Mode B-2
Non-Quadrature Mode B-2
APPENDIX C: TYPICAL SET-UP EXAMPLES C-1

Chapter 1: Introduction

The 2IQEC2/4 is a $2 / 4$ channel quadrature encoder 24 bit counter card used to track the position of up to 4 separate encoders. This card is an ISA card that can be used in either an 8 or 16 bit slot. This card allows the computer to keep track of position without a lot of CPU overhead, freeing it up for more important tasks.

The 2IQEC2/4 offers a huge amount of flexibility. Upon a borrow or carry the card can be configured to reset, load a preset, cause an interrupt request or simply send out a TTL signal to indicate the carry or borrow. The card contains two inputs that can be configured to clear the counter or load the preset into the counter. The index lines may also be used to clear the counter, load the preset or cause an interrupt. The four channels use IRQ sharing to prevent all the computer's resources from being taken up by this card. The interrupt service routine can poll the card to find out which channel caused the interrupt request.

Packing List

Examine the shipping carton and contents for physical damage.
The following items should be in the shipping carton:

1. 2IQEC2 or 2IQEC4
2. 2IQEC2/4 3.5" disk
3. This instruction manual

If any of these items are damaged or missing contact $B \& B$ Electronics immediately.

Address Switch Setup

The 2IQEC2/4 cards use a 7-position DIP switch to program the binary I/O address of each port on the card. The 2IQEC2/4 cards are factory configured for address 0×300 with no IRQ. If you plan on installing the 2IQEC2/4 with these settings, check the switch settings to ensure that they did not get inadvertently changed during shipping.

Specifications

> Bus: IBM PC ISA Bus
> Slot: Requires 1 full length slot for complete IRQ selectability. When installed in a short slot, IRQs 10-15 will not be available. The four channel card requires an additional space to mount the connectors in the back panel. This space does not need a slot on the motherboard.
> Dimensions: $8.75{ }^{\prime \prime} \times 4.4^{\prime \prime}$
> I/O connection: 15-pin female D-sub connectors
> Interrupt: IRQ 2-7, 10-12, 14, or 15.
> Address: Switch programmable, 0 to hex 7F0
> RS-422 Differential inputs
Differential input high-threshold voltage 0.2 V maximum Differential input low threshold voltage -0.2 V maximum Input differential voltage range 1.5 to 6 volts
> TTL inputs
Input high threshold 2 V Maximum
Input low threshold 0.7 V Maximum
Input voltage range -0.2 to 5.5 volts
> TTL outputs
1 mA source @ 4.375 V
5 mA sink@ 0.5 V
> 12 MHz count rate in quadrature 4 X mode.
> 24-bit counters for up to four axes on 2IQEC4 (two axes on 2IQEC2)
> Digital filtering of the quadrature clocks
> Power Consumption
+5 VDC @ 250 mA
(See additional specifications in Appendix B.)

Chapter 2: Installation

Software Installation

The 2IQEC2/4 comes with a useful example program. This example program may be used royalty free when used with the B\&B Electronics 2IQEC2/4. Any other use is strictly prohibited. To install this example file on your hard drive:

1. Place the disk in drive A:
2. Type A: and press the <ENTER> key.
3. Type Install and press the <ENTER> key.
4. Follow the instructions given by the program.

Installing the Card

1. Turn the power to your computer off.
2. Remove the cover of the computer. Be sure to use proper grounding techniques.
3. Pick any full length (16-bit) unused slot. Although the 2IQEC2/4 cards will work in a short (8-bit) slot, IRQ's 10-15 will not be available.
4. Remove the expansion slot cover. Save the screw for installation of the 2IQEC2/4 card.
5. Set the address, IRQ, and other jumper settings. See Card Settings in the next section for instructions on setting the address and IRQ.
6. Install the 2IQEC2/4 card into the unused slot. Be certain that the card is inserted completely into the slot.
7. Secure the card with the mounting screw.

Card Settings

Address

Switch S1 configures the address of the card. Switches
represent a 0 in the ON position, 1 when OFF. The address lines are labeled on the card. SA10 is the MSB and SA4 is the LSB.
Table 1 shows the numerical weight and electrical connection of each switch position.

Table 1. Address Switches

	1st Digit				2nd Digit				
Switch Position	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$		
Bus Connection	SA10	SA9	SA8	SA7	SA6	SA5	SA4		
Decimal Weight	1024	512	256	128	64	32	16		
Hex Weight	400	200	100	80	40	20	10		

To set the address of the 2IQEC2/4 card at some common locations, follow the switch settings shown in Table 2.

Table 2. Frequently Unused Port Addresses

Base Hex Address	Binary Equivalent	Switch Settings MSB LSB 7654321	I/O Space Description
200	1000000000	0100000	game port
300	110000000	0110000	prototype
310	1100010000	0110001	prototype
380	111000000	0111000	SDLC
3A0	1110100000	0111010	bisync com

To install at another address, follow the procedure below.

1. Select the address. Using an I/O port usage table (one is included in Appendix A) select an unused hex address space. Note that the card occupies 16 bytes of I/O space. Use caution when selecting a port address. It is very important that nothing else is installed at the selected address.
2. Convert the hex address to its binary equivalent.
3. Throw away the 4 least significant bits.
4. The remaining 7 digits represent the switch address. 1's represent an OFF switch. O's represent an ON switch.

IRQ

The 2IQEC2/4 card allows the use of interrupts (IRQ) 2-7, $10-12,14$, and 15 . This interrupt is shared with all the channels. To determine the channel that caused the interrupt, the interrupt service routine must read the address located at the base address plus 8 . The lower nibble will indicate which channel caused the interrupt. Where bit 0 is the X -Axis, bit 1 is the Y -Axis, bit 2 is the Z Axis, and bit 3 is the W-Axis. The upper nibble is not used. To clear the interrupt, the interrupt service routine must read or write to the address located at base address plus 12 ($0 \times \mathrm{C}$). The IRQ is set by placing a jumper on JP1. Only one jumper should be placed on JP1 at any one time. Check Table 3 for common interrupt uses.

Table 3. Hardware Interrupts

IRQ	AT machines	XT machines
$\mathbf{2}$	routed to IRQ controller 2	Reserved
$\mathbf{3}$	serial port COM2,4	Serial port COM2,4
$\mathbf{4}$	serial port COM1,3	Serial port COM1,3
$\mathbf{5}$	LPT2	hard disk
$\mathbf{6}$	floppy disk	Floppy disk
$\mathbf{7}$	LPT1	parallel printer port 1 (LPT1)
$\mathbf{8}$	real-time clock	not available
$\mathbf{9}$	re-directed to IRQ2	not available
$\mathbf{1 0}$	Unassigned	not available
$\mathbf{1 1}$	Unassigned	not available
$\mathbf{1 2}$	Unassigned	not available
$\mathbf{1 3}$	Coprocessor	not available
$\mathbf{1 4}$	hard disk	not available
$\mathbf{1 5}$	Unassigned	not available

The conditions required to generate an interrupt can be selected by the use of jumpers. Each axis is independently configured. Note that more than one condition can be configured to generate the interrupt. Note that the use of an interrupt is not required.

Configuring the jumpers

The jumpers located on the left side of the card make it easy to configure the card to your individual needs. The jumpers are grouped by axis and function. The top group of jumpers is for the X axis. Then next groups going down are for the Y -axis, Z -axis, and W-axis respectfully. There are three signals that can be routed via these jumpers. They are the FLG1 and FLG2 outputs from the counter chips, and the index from the encoder. The FLG1 and FLG2 outputs are software configurable. The FLG1 can be configured to act as a carry (pulse on counter overflow), compare (pulse when counter equals the preset register), index, or carry and borrow (pulse on either an overflow or an underflow of the counter). The FLG2 can be configured to act as a borrow, up-down indicator, or an error flag. These outputs are brought to the user connectors.

The first jumpers labeled JP4, JP8, JP12 and JP16 allow you to select what conditions cause the counter to be loaded with the preset value in the preset register. The middle jumpers labeled JP3, JP7, JP11, and JP15 allow you to select what conditions cause the counter to be reset or the counter to be enabled depending on the software configuration of the input. The last jumpers labeled JP2, JP6, JP10, and JP14 are used to define what conditions cause an interrupt (IRQ).

JP5 selects the type of input encoder signals for the X and Y axes not including the index. Set jumper JP5 for RS-422 differential mode and remove the jumper for TTL level encoder input. When in differential mode the TTL output of the differential receivers is present at the TTL pins. Leave these pins unconnected in differential mode.

JP13 selects the type of input encoder signals for the Z and W axis not including the index. Set jumper JP13 for RS-422 differential mode and remove the jumper for TTL level encoder input. When in differential mode the TTL output of the differential receivers is present at the TTL pins. Leave these pins unconnected in differential mode.

JP9 selects the type of input from the index pins. This jumper affects all the axes' index inputs. Set jumper JP9 for RS-422 differential mode and remove the jumper for TTL level encoder input. When in differential mode the TTL output of the index receivers is present at the TTL pins. Leave these pins unconnected in differential mode.

Location of Jumpers

Software Registers

Flag Register (Read Data Address)

The FLAG register is a read-only register that holds the status information of the counters and can be read out on the data bus. To read the FLAG byte for any axis, read the control address of that axis.

FLAG Byte Defined

Reset and Load Signal Decoders (Write to Control Address)

The following functions can be performed by writing to the control address for that axis. Note that bits 5 and 6 define the register and should always be zero when writing to the RLD register.

RLD Byte Defined

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

Filter Clock Prescalers

Each PSC is an 8-bit programmable modulo-N down counter, driven by the FCK clock. The factor N is downloaded into a PSC from the associated PR low byte register PRO. The PSCs provide the ability to generate independent filter clock frequencies for each channel.

Final filter clock frequency
FFCKn=fFck/($\mathrm{n}+1$), where $\mathrm{n}=\mathrm{PSC}=0$ to 255

Counter Mode Registers (Write to Control Address)

The counter's operational mode is programmed by writing a byte into the counter mode registers (CMRs).

```
                        CMR Byte Defined
|7| 6 5 4 4 3 2 2 1 0
X Ollllllllll
X 0
X 0
X Ollllllll
X 
X 0
X O
X
X
X
0
1 0 together
```


Definitions of count modes

Range Limit. In range limit count mode, an upper and a lower limit is set, mimicking limit switches in the mechanical counterpart. The upper limit is set by the contents of the PR and the lower limit is set to be 0 . The CNTR freezes at CNTR=PR when counting up and at CNTR $=0$ when counting down. At either of these limits, the counting is resumed only when the count direction is reversed.

Non-Recycle. In non-recycle count mode, the CNTR is disabled, whenever a count overflow or underflow takes place. The end of cycle is marked by the generation of a Carry (in Up Count) or a Borrow (in Down Count). The CNTR is re-enabled when a reset or load operation is performed on the CNTR.

Modulo-N. In modulo-N count mode, a count boundary is set between 0 and the content of PR. When counting up at CNTR=PR, the CNTR is reset to 0 and the up count is continued from that point. When counting down, at CNTR $=0$, the CNTR is loaded with the content of PR and down count is continued from that point.

The modulo- N is true bidirectional in that the divide-by- N output frequency is generated in both up and down direction of counting for same N and does not require the complement of N in the UP instance. In frequency divider application, the modulo-N output frequency can be obtained at either the Compare(FLG1) or the Borrow(FLG2) output. Modulo-N output frequency, $\mathrm{f}_{\mathrm{N}}=\mathrm{ff}_{\mathrm{f}} /(\mathrm{N}+1)$ where f_{1} is the input count frequency and $N=P R$.

Input/Output Control Register (Write to Control Address)

The functional modes of the programmable input and output pins are written into the IORs.

IOR Byte Defined

7	6	5	4	3	2	1

$X \quad 1 \quad 0 \quad X \quad X \quad X \quad X \quad 0 \quad$ Disable inputs A and B
$X \quad 1 \quad 0 \quad X \quad X \quad X \quad X \quad 1$ Enable inputs A and B
$\begin{array}{lllllllll}\mathrm{X} & 1 & 0 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 0 & \mathrm{X} & \text { LCNTR'/LOL' pin is Load CNTR input }\end{array}$
$\begin{array}{lllllllll}X & 1 & 0 & X & X & X & 1 & X & \text { LCNTR'/LOL' pin is Load OL input }\end{array}$
$\begin{array}{lllllllll}\mathrm{X} & 1 & 0 & \mathrm{X} & \mathrm{X} & 1 & \mathrm{X} & \mathrm{X} & \text { RCNTR'/ABG pin is Reset CNTR input }\end{array}$
$\begin{array}{lllllllll}X & 1 & 0 & X & X & 0 & X & X & R C N T R\end{array}$
X $\begin{array}{llllllll} & 0 & 0 & 0 & X & X & X & \text { FLG1 pin is Carry' output, FLG2 pin is Borrow' output }\end{array}$
$\begin{array}{lllllllll}\mathrm{X} & 1 & 0 & 0 & 1 & X & X & X & \text { FLG1 pin is Compare' output, FLG2 pin is Borrow' output }\end{array}$
$\begin{array}{llllllllll}\mathrm{X} & 1 & 0 & 1 & 0 & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{FLG} 1 & \text { pin is Carry'/Borrow' output, } \mathrm{FLG} 2 \text { pin is } \mathrm{U} / \mathrm{D}^{\prime}\end{array}$
$\left.\begin{array}{llllllll}X & 1 & 0 & 1 & 1 & X & X & X\end{array}\right)$ FLG1 pin is IDX, FLG2 is E
$0 \quad 1 \quad 0 \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X}$ Select the IOR addressed by $\mathrm{X}^{\prime} / \mathrm{Y}$ input
$\begin{array}{lllllllll}1 & 1 & 0 & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \text { Select both XIOR and YIOR or ZIOR and WIOR together }\end{array}$

Index Control Registers (Write to Control Address)

Either the LCNTR'/LOL' or the RCNTR'/ABG inputs can be initialized to operate as an index input. When initialized as such, the index signal from the encoder, applied to one of these inputs performs either the Reset CNTR or the Load CNTR or the Load OL operation synchronously with the quadrature clocks. Note that only one of these inputs can be selected as the Index input at a time and hence only one type on indexing function can be performed in any given set-up. The index function must be disabled in nonquadrature count mode.

IDR Byte Defined

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

```
X 1 1 < X X X X X 0 Disable Index
X 1 1 1 X X X X X X 1 Enable Index
X
X 1 1 1 Ollllllll
X 1.lllllllll
X 1 1 1 X X X O O X X R RNTR'/ABG pin is indexed
0
11 1 1 X X X X X X X Select both XCIDR and YIDR or ZIDR and WIDR together
```


Chapter 3: TROUBLESHOOTING

If you are unable to communicate with the card from your software:

1. Double check that the address is properly set.
2. Check your pinouts.
3. Try the demo software that comes with the card.
4. Call B\&B Electronics' Technical Support. Technicians are available at (815) 433-5100 to answer your questions from 8 am - 5:00 pm weekdays (Central Time).

Appendix A: Hardware I/O Map

I/O Map of XT Class Machines

Hex Address	Address Function in XT Class Machines
000-00F	DMA controller (8237A)
$\mathbf{0 2 0 - 0 2 1}$	interrupt controller (8259A)
$\mathbf{0 4 0 - 0 4 3}$	timer (8253)
$\mathbf{0 6 0 - 0 6 3}$	PPI (8255A)
080-083	DMA page register (74LS612)
0A0-0AF	NMI - non maskable interrupt
200-20F	game port joystick controller
210-217	expansion unit
2E8-2EF	COM4 serial port
2F8-2FF	COM2 serial port
300-31F	prototype card
320-32F	hard disk
378-37F	parallel printer
380-38F	SDLC
3B0-3BF	MDA - monochrome adapter and printer
3D0-3D7	CGA - color graphics adapter
3E8-3EF	COM3 serial port
3F0-3F7	floppy diskette controller
3F8-3FF	COM1 serial port

Hardware I/O Map of AT Class Machines

Hex Address	Address Function in AT Class Machines
000-01F	DMA controller \#1 (8237A-5)
020-03F	interrupt controller \#1 (8259A)
040-05F	timer (8254)
060-06F	keyboard (8042)
070-07F	NMI - non maskable interrupt \& CMOS RAM
080-09F	DMA page register (74LS612)
0A0-0BF	interrupt controller \#2 (8259A)
0C0-0DF	DMA controller \#2 (8237A)
0F0-0FF	80287 math coprocessor
1F0-1F8	hard disk
200-20F	game port joystick controller
258-25F	Intel Above Board
278-27F	parallel printer port 2
2E8-2EF	COM4 serial port
2F8-2FF	COM2 serial port
300-31F	prototype card
378-37F	parallel printer 1
380-38F	SDLC or bisynch com 2
3A0-3AF	bisynch com 1
3B0-3BF	MDA - monochrome adapter
3BC-3BE	parallel printer on monochrome adapter
3C0-3CF	EGA - reserved
3D0-3D7	CGA - color graphics adapter
3E8-3EF	COM 3 serial port
3F0-3F7	floppy diskette controller
3F8-3FF	COM1 serial port

Any sixteen byte space not listed above and not used by any other equipment in your system may be used for the serial port.

Appendix B: Specifications/Timing Diagrams

Pin	Description
1.	A+
2.	A-
3.	A (TTL)
4.	B+
5.	B-
6.	B (TTL)
7.	${ }^{+}$
8.	$1-$
9.	1 (TTL)
10.	FLG 2 (Programmed output)
11.	FLG 1 (Programmed output)
12.	Load Counter (Input)
13.	Reset Counter (Input)
14.	+5VDC
15.	Ground
Addresses	
Base X Axis Data	
Base+1 X Axis Control	
Base+2 Y Axis Data	
Base+3 Y Axis Control	
Base+4 Z Axis Data	
Base+5 Z Axis Control	
Base+6 W Axis Data	
Base+7 W Axis Control	
Base+8 IRQ Register	
Base+9 Do not use	
Base+10 Do not use	
Base+11 Do not use	
Base+12 Clear IRQ	
Base+13 Do not use	
Base+14 Do not use	
Base+15 Do not use	

Transient Characteristics

Quadrature Mode

Parameter	Symbol	Min.Value	Max. Value	Unit	Remarks
FCK High Pulse Width	t1	21	-	ns	-
FCK Low Pulse Width	t2	21	-	ns	-
FCK Frequency	fFCK	-	24	MHz	-
Mod-n Filter Clock (FCKn)Period	t3	42	-	ns	$\begin{aligned} & \mathrm{t} 3=(\mathrm{n}+1)(\mathrm{t} 1+\mathrm{t} 2), \\ & \text { where } \\ & \mathrm{N}=\mathrm{PSC}=0 \text { to } \mathrm{FFH} \end{aligned}$
FCKn Frequency	fFCKn	-	24	MHz	-
Quadrature Separation	t4	83	-	ns	$t 4 \geq 2$ t3
Quadrature Clock Pulse Width	t5	167	-	ns	t5 ≥ 4 t3
Quadrature Clock Frequency	$\mathrm{fQA}, \mathrm{fQB}$	-	3	MHz	$\mathrm{fQA}=\mathrm{fQB}=1 / 8 \mathrm{t} 3$
Quadrature Clock to Count Delay	tQ1	5t3	6+3	-	-
X1/X2/X4 Count Clock Pulse Width	tQ2	42	-	ns	tQ2= ${ }^{\text {¢ }} 3$
Index Input Pulse Width	tidx	125	-	ns	tidx ≥ 3 t 3
Index Skew from A	tAi	-	42	ns	tai
Carry/Borrow/Compare Output Width	tQ3	42	-	ns	tQ3= ${ }^{\text {¢ }}$

Non-Quadrature Mode

Parameter	Symbol	Min.Value	Max. Value	Unit	Remarks
Clock A - High Pulse Width	t 6	16	-	ns	-
Clock A - Low Pulse Width	t 7	16	-	ns	-
Direction Input B Set-up Time	t 8 S	20	-	ns	-
Direction Input B Hold Time	t 8 H	20	-	ns	-
Gate Input (ABG) Set-up Time	tGS	20	-	ns	-
Gate Input (ABG) Hold Time	tGH	20	-	ns	-
Clock Frequency (non-Mod-N)	fA	-	30	MHz	$\mathrm{fA}=(1 /(\mathrm{t} 6+\mathrm{t})$) $)$
Clock Frequency (Mod-N)	fAN	-	25	MHz	-
Clock to Carry or Borrow Out Delay	t 9	-	30	ns	-
Carry or Borrow Out Pulse Width	t 10	16	-	ns	$\mathrm{t} 10=\mathrm{t} 7$
Load CNTR, Reset CNTR and					
\quad Load OL Pulse Width	t 11	20	-	ns	-
Clock to Compare Out Delay	t 12	50	-	ns	-

Carry, Borrow, Compare, Carry Toggle, Borrow Toggle and Compare Toggle (4X Quadrature, Normal, Binary Count, and PR=1)

\qquad
日TTLALBM ——

Appendix C: Typical Set-up Examples

 RS-422 (Differential)

TTL (Single Ended)

Motor
Encoder
2IQECX

